
This is a special edition of an established title widely
used by colleges and universities throughout the world.
Pearson published this exclusive edition for the benefit
of students outside the United States and Canada. If you
purchased this book within the United States or Canada
you should be aware that it has been imported without
the approval of the Publisher or Author.

Pearson Global Edition

GlobAl
edITIon

GlobAl
edITIon

For these Global editions, the editorial team at Pearson has
collaborated with educators across the world to address a wide
range of subjects and requirements, equipping students with the best
possible learning tools. This Global edition preserves the cutting-edge
approach and pedagogy of the original, but also features alterations,
customization, and adaptation from the north American version.

etter
T

h
Ir

d
 ed

IT
Io

n
G

lo
b

A
l

ed
IT

Io
n

Introduction to MATlAb®
ThIrd edITIon

delores M. etter

Introduction to M
AT

lA
b

®

Introduction to MATLAB®

A01_ETTE9390_03_GE_FM.INDD 1 18/11/14 7:06 PM

A01_ETTE9390_03_GE_FM.INDD 2 18/11/14 7:06 PM

Introduction to MATLAB®

Third Edition
Global Edition

Delores M. etter
Southern Methodist University
Dallas, Texas

Global Edition contributions by
Anju MishrA
Amity University
Uttar Pradesh, India

Hoboken  •  Boston  •  Columbus
San Francisco  •  New York  •  Indianapolis  •  London
Toronto  •  Sydney  •  Singapore  •  Tokyo  • Montreal
Dubai  • Madrid  •  Hong Kong  • Mexico City
Munich  •  Paris  •  Amsterdam  •  Cape Town

A01_ETTE9390_03_GE_FM.INDD 3 18/11/14 7:06 PM

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Delores M. Etter to be identified as the author of this work have been asserted by her in accordance with the Copyright,
Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introduction to MATLAB®, 3rd Edition, ISBN 978-0-13-377001-8 by Delores M. Etter,
published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a
license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby
Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author
or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

ISBN 10: 1-292-01939-5
ISBN 13: 978-1-292-01939-0

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset in New Baskerville Std by Jouve North America
Printed and bound by Courier Kendallville in The United States of America

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development,
research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Holly Stark
Editorial Assistant: Carlin Heinle
Head of Learning Asset Acquisition, Global Editions: Laura Dent
Acquisition Editor, Global Editions: Subhasree Patra
Acquisition Editor, Global Editions: Aditee Agarwal
Assistant Project Editor, Global Editions: Paromita Banerjee
Director of Marketing: Margaret Waples
Marketing Manager: Tim Galligan
Marketing Assistant: Jon Bryant

Program Management Team Lead: Scott Disanno
Program Manager: Clare Romeo
Project Manager: Priyadharshini Dhanagopal
Senior Production Manufacturing Controller, Global Editions:
 Trudy Kimber
Senior Operations Specialist: Nick Sklitsis
Operations Specialist: Linda Sager
Permissions Project Manager: Karen Sanatar
Full-Service Project Management: Jouve North America
Cover Image: © PinnacleAnimates/Shutterstock

A01_ETTE9390_03_GE_FM.INDD 4 18/11/14 7:06 PM

Contents

About this book 7
Acknowledgments 11

1  •  An IntroductIon to EngInEErIng ProblEm SolvIng 13

Engineering Achievements 13
1.1 Engineering Environment 14
1.2 Engineering Computing and MATLAB 14
1.3 An Engineering Problem-Solving Methodology 19

2  •  gEttIng StArtEd wIth mAtlAb 29

Engineering Achievement: Wind Tunnels 29
2.1 Introduction to MATLAB and MATLAB Windows 29
2.2 Simple Operations 37
2.3 Output Options 52
2.4 Saving Your Work 57

3  •  mAtlAb FunctIonS 69

Engineering Achievement: Weather Prediction 69
3.1 Introduction to Functions 69
3.2 Elementary Mathematical Functions 72
3.3 Trigonometric Functions 76
3.4 Data Analysis Functions 81
3.5 Random Number Generating Functions 92
3.6 User-Defined Functions 99

4  •  PlottIng 109

Engineering Achievement: Ocean Dynamics 109
4.1 x-y Plots 110

5

A01_ETTE9390_03_GE_FM.INDD 5 18/11/14 7:06 PM

6  Contents

4.2 Three-Dimensional Plots 131
4.3 Editing Plots from the Figure Window 135
4.4 Creating Plots from the Workspace Window 136

5  •  control StructurES 143

Engineering Achievement: Signal Processing 143
5.1 Relational and Logical Operators 143
5.2 Selection Structures 146
5.3 Loops 156

6  •  mAtrIx comPutAtIonS 165

Engineering Achievement: Manned Space Flight 165
6.1 Special Matrices 165
6.2 Matrix Operations and Functions 171
6.3 Solutions to Systems of Linear Equations 181

7  •  SymbolIc mAthEmAtIcS 191

Engineering Achievement: Geolocation 191
7.1 Symbolic Algebra 191
7.2 Equation Solving 197
7.3 Differentiation and Integration 202

8  •  numErIcAl tEchnIquES 209

Engineering Achievement: Dynamic Fluid Flow 209
8.1 Interpolation 209
8.2 Curve Fitting: Linear and Polynomial Regression 218
8.3 Using the Interactive Fitting Tool 226
8.4 Numerical Integration 230
8.5 Numerical Differentiation 232

IndEx 241

A01_ETTE9390_03_GE_FM.INDD 6 18/11/14 7:06 PM

About This Book

Engineers and scientists use computers to solve a variety of problems, ranging from
the evaluation of a simple function to solving a system of equations. MATLAB® has
become the technical computing environment of choice for many engineers and
scientists because it is a single interactive system that incorporates numeric compu-
tations, scientific visualization, and symbolic computation.

Because the MATLAB computing environment is one that a new engineer is likely
to encounter in a job, it is a good choice for an introduction to computing for
 engineers. This book is appropriate for use as an introductory engineering text or as a
supplemental text in an advanced course. It is also useful as a professional reference.

This text was written to introduce engineering problem solving with the follow-
ing objectives:

•	 Present	a	consistent	methodology for solving engineering problems.
•	 Describe	the	exceptional	computational and visualization capabilities of MATLAB.
•	 Illustrate	the	problem-solving	process	through	a	variety	of	engineering exam-

ples and applications.

To accomplish these objectives, Chapter 1 presents a five-step process that was
developed by the author and is used to consistently solve engineering problems
throughout the text. The rest of the chapters present the capabilities of MATLAB
for solving engineering problems using specific examples from many different
engineering disciplines.

TexT OrgAnizATiOn
This book is designed for use in a variety of engineering and science course settings
as a primary text for introductory students and as a supplement for intermediate or
advanced courses. It is feasible to cover Chapters 1 through 8 in a one-semester
course for a complete introduction to MATLAB’s capabilities. If a briefer introduc-
tion to MATLAB is desired, we suggest that Chapters 1 through 4 be covered along
with selected topics from Chapters 5 through 8.

PrerequisiTes
No prior experience with the computer is assumed. The mathematical background
needed for Chapters 1 through 6 is college algebra and trigonometry. More
advanced mathematics is needed for some of the material in later chapters.

PrOBLeM-sOLving MeThODOLOgy
The emphasis on engineering and scientific problem solving is an important part of
this text. Chapter 1 introduces a five-step process for solving engineering problems
using the computer:

 1. State the problem clearly.
 2. Describe the input and output information.

7

A01_ETTE9390_03_GE_FM.INDD 7 18/11/14 7:06 PM

8  About This Book

 3. Work a simple example by hand.
 4. Develop an algorithm and convert it to MATLAB.
 5. Test the solution with a variety of data.

To reinforce the development of problem-solving skills, each of these steps is
identified every time a complete solution to an engineering problem is developed.

engineering AnD sCienTifiC APPLiCATiOns
Throughout the text, emphasis is placed on incorporating real-world engineering
and scientific examples with solutions and usable code. Each chapter begins with a
discussion of a significant engineering achievement. The chapter then includes
examples related to this achievement. These examples include analysis of data from
the following applications:

•	 temperatures	from	a	sensor
•	 mass	of	air	in	a	wind	tunnel
•	 velocity	and	acceleration	for	unducted	fan	engine
•	 saturation	vapor	pressure	for	water	at	different	temperatures
•	 Great	Circle	distances	using	GPS	coordinates
•	 wind	speeds	from	the	Mount	Washington	Observatory
•	 wind	speeds	generated	for	a	flight	simulator
•	 ocean	wave	interaction
•	 performance	quality	scores
•	 mass	calculations	for	a	spacecraft
•	 current	values	for	electrical	circuits
•	 projectile	range	and	impact
•	 interpolation	using	steam	tables
•	 flow	model	for	water	in	a	culvert
•	 population	models

visuALizATiOn
The visualization of the information related to a problem is a key advantage of
using MATLAB for developing and understanding solutions. Therefore, it is import-
ant to learn to generate plots in a variety of formats to use when analyzing, inter-
preting, and evaluating data. We begin using plots with the first MATLAB program
presented in Chapter 1 and continually expand plotting capabilities within the
remaining chapters. Chapter 4 covers all the main types of plots and graphs.

sOfTwAre engineering COnCePTs
Engineers and scientists are also expected to develop and implement user-friendly
and reusable computer solutions. Therefore, learning software engineering tech-
niques is crucial to successfully develop these computer solutions. Readability and
documentation are stressed in the development of programs. Through MATLAB,
users are able to write portable code that can be transferred from one computer
platform to another. Additional topics that relate to software engineering issues are
discussed in Chapter 1 and include the software life cycle, maintenance, and
 software prototypes.

A01_ETTE9390_03_GE_FM.INDD 8 18/11/14 7:06 PM

 About This Book  9

PrOBLeM seTs
Learning any new skill requires practice at a number of different levels of diffi-
culty. Each chapter ends with a set of problems. These are problems that relate to a
variety of engineering applications with the level of difficulty ranging from straight-
forward to longer assignments. engineering data sets are included, for many of the
problems, to use in testing.

sTuDenT AiDs
Each chapter ends with a summary that reviews the topics covered and includes a
list of Key Terms. A MATLAB summary lists all the special symbols, commands, and
functions defined in the chapter. hints are provided to help the student avoid some
of the common errors.

whAT’s new in This eDiTiOn?
•	 The	discussions,	screen	captures,	examples,	and	problem	solutions	have	been	

updated	to	reflect	MATLAB	Version	8.2,	R2013b.
•	 A	discussion	of	the	new	Help	browser	is	included	along	with	screen	captures	to	

illustrate using this feature.
•	 The	 section	 on	 random	number	 generation	 has	 been	 rewritten	 to	 reflect	

changes relative to the random number seed and to include the new function
for generating random integers.

•	 The	section	on	numerical	integration	has	been	rewritten	to	support	the	new	
integration function.

•	 Updated	 examples	 and	 discussion	 for	 current	 hardware	 and	 software	 are	
included throughout the text.

•	 Updated	discussions	and	examples	of	importing	and	exporting	data	with	other	
applications, such as Excel.

A01_ETTE9390_03_GE_FM.INDD 9 18/11/14 7:06 PM

A01_ETTE9390_03_GE_FM.INDD 10 18/11/14 7:06 PM

Acknowledgments

I want to acknowledge the outstanding work of the publishing team at Prentice Hall.
My first MATLAB text was published in 1993, so some of us have worked together for
many years. I would like to especially acknowledge the support of Marcia Horton,
Holly Stark, Clare Romeo, Scott Disanno, and Greg Dulles. I would also like to
express my gratitude to my husband, a mechanical/aerospace engineer, for his help
in developing some of the engineering applications. Finally, I want to recognize the
important contributions of the many students in my introductory courses for their
feedback on the explanations, the examples, and the problems.

Delores M. Etter

Texas Instruments Distinguished Chair in Engineering Education

Professor, Department of Electrical Engineering

The Bobby B. Lyle School of Engineering

Southern Methodist University

Dallas, Texas

Pearson would also like to thank and acknowledge B. R. Chandavarkar (NITK
Surathkal), Debaprasad Das (Assam University), and Rohit P. Tahiliani (NMAM
Institute of Technology) for reviewing the Global Edition.

11

A01_ETTE9390_03_GE_FM.INDD 11 18/11/14 7:06 PM

A01_ETTE9390_03_GE_FM.INDD 12 18/11/14 7:06 PM

EnginEEring AchiEvEmEnts
Engineers solve real-world problems using scientific principles from disciplines that
include computer science, mathematics, physics, biology, and chemistry. It is this vari-
ety of subjects and the challenge of real problems that have a positive impact on our
world, which makes engineering so interesting and rewarding. For example, engi-
neers are working to develop techniques to provide access to clean water to people
around the world. Engineers are working to make solar energy more economical so
that it can give more than the 1 percent of our energy that it provides today. Engineers
work to reduce pollution through developing ways to capture and store excess carbon
dioxide in our manufacturing plants. Engineers restore and improve our urban and
transportation infrastructure. At the beginning of each chapter, we will present a
short discussion on a significant engineering achievement, and in that chapter, we will
solve small problems related to that application.

After reading this chapter, you
should be able to
•	describe	some	important	

engineering achievements,
•	understand	the	

relationship of MATLAB

with computer hardware
and software, and

•	describe	a	five-step	process	
for solving engineering
problems.

Objectives

An Introduction
to Engineering
Problem Solving

c h a p t e r

1

M01_ETTE9390_03_GE_C01.indd 13 18/11/14 2:30 PM

14 Chapter 1 An Introduction to Engineering Problem Solving

1.1 EnginEEring EnvirOnmEnt
Engineers work in an environment that requires a strong technical background,
and the computer will be the primary computational tool of most engineers. The
focus of this text is to teach you the fundamentals of one of the most widely used
engineering tools—MATLAB. However, engineers in the twenty-first century must
also have many nontechnical skills and capabilities. The computer is also useful in
developing additional nontechnical abilities.

Engineers need strong communication skills both for oral presentations and
for the preparation of written material. Computers provide the software to assist
in writing outlines and developing materials, such as graphs, for presentations and
technical reports.

The design/process/manufacture path, which consists of taking an idea from a
concept to a product, is one that engineers must understand firsthand. Computers
are used in every step of this process, from design analysis, machine control, robotic
assembly, quality assurance to market analysis.

Engineering teams today are interdisciplinary teams. Learning to interact in
teams and to develop organizational structures for effective team communication is
important for engineers. You are likely to be part of a diverse engineering team in
which members are located around the globe, and thus, there are many additional
challenges for teams that are not geographically located.

The engineering world is a global one. To be effective, you need to understand
different cultures, political systems, and business environments. Courses in these
topics and in foreign languages help provide some understanding, but exchange
programs with international experiences provide invaluable knowledge in develop-
ing a broader understanding of the world.

Engineers are problem solvers, but problems are not always formulated care-
fully in the real world. An engineer must be able to extract a problem statement
from a problem discussion and then determine the important issues. This involves
not only developing order, but also learning to correlate chaos. It means not only
analyzing the data, but also synthesizing a solution using many pieces of informa-
tion. The integration of ideas can be as important as the decomposition of the
problem into manageable pieces. A problem solution may involve not only abstract
thinking about the problem, but also experimental learning from the problem
environment.

Problem solutions must also be considered in their societal context.
Environmental concerns should be addressed as alternative solutions to problems
are being considered. Engineers must also be conscious of ethical issues in provid-
ing test results, quality verifications, and design limitations. Ethical issues are never
easy to resolve, and some of the exciting new technological achievements bring
ethical issues with them.

The material presented in this text is only one step in building the knowledge,
confidence, and understanding needed by engineers today. We begin the process
with a brief discussion of computing systems and an introduction to a problem-
solving methodology that will be used throughout this text as we use MATLAB to
solve engineering problems.

1.2 EnginEEring cOmputing And mAtLAB
Before we begin discussing MATLAB, a brief discussion on computing is useful,
especially for those who have not had lots of experience with computers. A com-
puter is a machine that is designed to perform operations that are specified with

M01_ETTE9390_03_GE_C01.indd 14 18/11/14 2:30 PM

1.2 Engineering Computing and MATLAB 15

a set of instructions called a program. Computer hardware refers to the computer
equipment, such as a notebook computer, a thumb drive, a keyboard, a flat-screen
monitor, or a printer. Computer software refers to the programs that describe the
steps we want the computer to perform. This can be software that we have written,
or it can be programs that we download or purchase, such as computer games. Our
computer hardware/software can be self-contained, as in a notebook computer.
A computer can also access both hardware and software through a computer net-
work, and through access to the Internet. In fact, cloud computing provides access
to hardware, software, and large data sets through remote networks.

1.2.1 computer hardware
All computers have a common internal organization as shown in Figure 1.1. The
processor is the part of the computer that controls all the other parts. It accepts
input values (from a device such as a keyboard or a data file) and stores them in
memory. It also interprets the instructions in a computer program. If we want to
add two values, the processor will retrieve the values from memory and send them
to the arithmetic logic unit (ALU). The ALU performs the addition, and the pro-
cessor then stores the result in memory. The processing unit and the ALU use inter-
nal memory composed of read-only memory (ROM) and random access memory
(RAM); data can also be stored in external storage devices such as external drives or
thumb drives. The processor and the ALU together are called the central processing
unit (CPU). A microprocessor is a CPU that is contained in a single integrated-circuit
chip, which contains millions of components in an area much smaller than a post-
age stamp.

Many inexpensive printers today use ink-jet technology to print both color cop-
ies and black-and-white copies. We can also store information on a variety of digital
memory devices, including CDs and DVDs. A printed copy of information is called a
hard copy, and a digital copy of information is called an electronic copy or a soft copy.
Many printers today can also perform other functions such as copying, faxing, and
scanning.

Computers come in all sizes, shapes, and forms. In fact, most of our phones
today contain CPUs and store programs that they can execute. Smartphones also
contain a graphics processing unit, a significant amount of RAM, and are trend-
ing to multicore (or multiprocessor), low-power CPUs. Many homes today have

Internal
memory

External
memory

Processor

ALU

CPU

OutputInput

Figure 1.1
Internal organization
of a computer.

M01_ETTE9390_03_GE_C01.indd 15 18/11/14 2:30 PM

16 Chapter 1 An Introduction to Engineering Problem Solving

personal computers that are used for a variety of applications, including e-mail,
financial budgeting, and games; these computers are typically desktop computers
with separate monitors and keyboards. Notebook computers contain all their hard-
ware in a small footprint, and thus become very convenient. For some people, tab-
let computers (such as the iPad) and smartphones are even replacing the use of the
desktop and notebook computers.

1.2.2 computer software
Computer software contains the instructions or commands that we want the com-
puter to perform. There are several important categories of software, including
operating systems, software tools (MATLAB is a software tool), and language com-
pilers. Figure 1.2 illustrates the interaction among these categories of software
and the computer hardware. We now discuss each of these software categories in
more detail.

Operating Systems
Some software, such as an operating system, typically comes with the computer
hardware when it is purchased. The operating system provides an interface between
you (the user) and the hardware by providing a convenient and efficient environ-
ment in which you can select and execute the software application on your system.
The component of the operating system that manages the interface between the
hardware and software applications is called a kernel. Examples of desktop oper-
ating systems include Windows, Mac OS, Unix, and Linux. Operating systems for
smartphones include Android (a Linux variant) and iOS (a Unix variant).

Operating systems also contain a group of programs called utilities that allow
you to perform functions such as printing files, copying files from one folder to
another, and listing the files in a folder. Most operating systems today simplify using
these utilities through icons and menus.

(Students, engineers, scientists, accountants, l
awyers,

 . .

 .)

User

Application software

Operating system

H
a r d w a r e

(Compilers, word processors, spreadsheets,
. .

.)

(W

indows, Unix, Linux, Android, .

. .
)

(Dell, Apple, iPad, . .
 .)

Figure 1.2
Interactions between
software and hardware.

M01_ETTE9390_03_GE_C01.indd 16 18/11/14 2:30 PM

1.2 Engineering Computing and MATLAB 17

Software Tools
Software tools are programs that have been written to perform common opera-
tions. For example, word processors like Microsoft Word are programs that allow
you to enter and format text. They allow you to download information from the
Internet into the file, and allow you to enter mathematical equations. They also can
check your grammar and spelling. Most word processors also allow you to produce
documents that have figures, images, and can print in two columns. These capabili-
ties allow you to perform desktop publishing from a notebook computer.

spreadsheet programs like Excel are software tools that allow you to easily work
with data that can be displayed in a grid of rows and columns. Spreadsheets were
initially developed to be used for financial and accounting applications, but many
science and engineering problems can be easily solved with spreadsheets. Most
spreadsheet packages include plotting capabilities, so they are especially useful in
analyzing and displaying information in charts. Database management tools allow
you to analyze and “mine” information from large data sets.

Another important category of software tools is mathematical computation
tools. This category includes MATLAB and Mathematica. Not only do these tools
have very powerful mathematical commands, but they are also graphics tools that
provide extensive capabilities for generating graphs. This combination of compu-
tational and visualization power make them particularly useful tools for engineers.

If an engineering problem can be solved using a software tool, it is usually more
efficient to use the software tool than to write a program in a computer language.
The distinction between a software tool and a computer language is becoming less
clear as some of the more powerful software tools include their own language in
addition to having specialized operations. (MATLAB is both a software tool and a
programming language.)

Computer Languages
Computer languages can be described in terms of generations. The first generation
of computer languages is machine languages. Machine languages are tied closely to
the design of the computer hardware, and are often written in binary strings con-
sisting of 0s and 1s. Therefore, machine language is also called binary language.

An assembly language is also unique to a specific computer design, but its
instructions are written in symbolic statements instead of binary. Assembly lan-
guages usually do not have many statements; thus, writing programs in assembly
language can be tedious. In addition, to use an assembly language you must also
know information that relates to the specific hardware. Instrumentation that con-
tains microprocessors often requires that the programs operate very fast; thus, the
programs are called real-time programs. These real-time programs are usually writ-
ten in assembly language to take advantage of the specific computer hardware
in order to perform the steps faster. Assembly languages are second generation
languages.

Third generation languages use English-like commands. These languages
include C, C++, C#, and Java. Writing programs in a high-level language is cer-
tainly easier than writing programs in machine language or in assembly language.
However, a high-level language contains a large number of commands and an
extensive set of syntax (or grammar) rules for using these commands.

MATLAB is considered a fourth generation programming language because
of its powerful commands, user interfaces, and its ability to interface to other lan-
guages. Higher-level languages are still primarily in research phases and tend to be
domain specific.

M01_ETTE9390_03_GE_C01.indd 17 18/11/14 2:30 PM

18 Chapter 1 An Introduction to Engineering Problem Solving

1.2.3 Executing a computer program
A program written in a high-level language such as C must be translated into
machine language before the instructions can be executed by the computer. A spe-
cial program called a compiler is used to perform this translation. Thus, in order
to write and execute C programs, we must have a C compiler. The C compilers are
available as separate software packages for use with specific operating systems.

If any errors (often called bugs) are detected by the compiler during compila-
tion, corresponding error messages are printed. We must correct our program state-
ments and then perform the compilation step again. The errors identified during
this stage are called compiler errors or compile-time errors. For example, if we want
to divide the value stored in a variable called sum by 3, the correct expression in C is
sum/3; if we incorrectly write the expression using the backslash, as in sum\3, we will
get a compiler error. The process of compiling, correcting statements (or debugging),
and recompiling is often repeated several times before the program compiles with-
out compiler errors. When there are no compiler errors, the compiler generates a
program in machine language that performs the steps specified by the original C pro-
gram. The original C program is referred to as the source program, and the machine
language version is called an object program. Thus, the source program and the
object program specify the same steps; but the source program is written in a high-
level language, and the object program is specified in machine language.

Once the program has compiled correctly, additional steps are necessary to
prepare the object program for execution. This preparation involves linking other
machine language statements to the object program and then loading the program
into memory. After this linking/loading, the program steps are executed by the
computer. New errors called execution errors, run-time errors, or logic errors may
be identified in this stage; they are also called program bugs. Execution errors often
cause the termination of a program. For example, the program statements may
attempt to perform a division by zero, which generates an execution error. Some
execution errors do not stop the program from executing, but they cause incorrect
results to be computed. These types of errors can be caused by programmer errors
in determining the correct steps in the solutions and by errors in the data processed
by the program. When execution errors occur due to errors in the program state-
ments, we must correct the errors in the source program and then begin again
with the compilation step. Even when a program appears to execute properly, we
must check the answers carefully to be sure that they are correct. The computer
will perform the steps precisely as we specify, and if we specify the wrong steps, the
computer will execute these wrong (but syntactically legal) steps and thus present
us with an answer that is incorrect.

The process of compilation, linking/loading, and execution is outlined in
Figure 1.3. The process of converting an assembly language program to binary is
performed by an assembler program, and the corresponding processes are called
assembly, linking/loading, and execution.

C language
program

Machine
language
program

Program
output

Input data

Execution

Compile

Linking/loadingCompilation

Link/load Execute

Figure 1.3
Program compilation/
loading, linking, and
execution.

M01_ETTE9390_03_GE_C01.indd 18 18/11/14 2:30 PM

1.3 An Engineering Problem-Solving Methodology 19

1.2.4 software Life cycle
The cost of a computer solution to a problem can be estimated in terms of the cost
of the hardware and the cost of the software. The majority of the cost in a computer
solution today is in the cost of the software, and thus, a great deal of attention has
been given to understanding the development of a software solution.

The development of a software project generally follows definite steps or cycles,
which are collectively called the software life cycle. These steps typically include
project definition, detailed specification, coding and modular testing, integrated
testing, and maintenance. (These steps will be explained in more detail in later
chapters.) Software maintenance is a significant part of the cost of a software sys-
tem. This maintenance includes adding enhancements to the software, fixing
errors identified as the software is used, and adapting the software to work with new
hardware and software. The ease of providing maintenance is directly related to
the original definition and specification of the solution because these steps lay the
foundation for the rest of the project. The problem-solving process that we present
in the next section emphasizes the need to define and specify the solution carefully
before beginning to code or test it.

One of the techniques that has been successful in reducing the cost of software
development both in time and cost is the development of software prototypes. Instead
of waiting until the software system is developed and then letting the users work
with it, a prototype of the system is developed early in the life cycle. This prototype
does not have all the functions required of the final software, but it allows the user
to use it early in the life cycle, and to make desired modifications to the specifica-
tions. Making changes earlier in the life cycle is both cost- and time- effective. It is
not uncommon for a software prototype to be developed in MATLAB, and then for
the final system to be developed in another language.

As an engineer, it is very likely that you will need to modify or add additional
capabilities to existing software that has been developed using a software tool or a
high-level language. These modifications will be much simpler if the existing soft-
ware is well-structured and readable and if the documentation that accompanies
the software is up-to-date and clearly written. For these reasons, we stress develop-
ing good habits that make programs more readable and self-documenting.

1.3 An EnginEEring prOBLEm-sOLving mEthOdOLOgy
Problem solving is a key part not only of engineering courses, but also of courses in
computer science, mathematics, physics, and chemistry. Therefore, it is important to
have a consistent approach to solving problems. It is also helpful if the approach is
general enough to work for all these different areas, so that we do not have to learn
one technique for solving mathematics problems, a different technique for solving
physics problems, and so on. The problem-solving process that we present works for
engineering problems and can be tailored to solve problems in other areas as well.
However, it does assume that we are using a computer to help solve the problem.

The process, or methodology, for problem solving that we will use throughout
this text has five steps:

1. State the problem clearly.
2. Describe the input and output information.
3. Work the problem by hand (or with a calculator) for a simple set of data.
4. Develop a MATLAB solution.
5. Test the solution with a variety of data.

M01_ETTE9390_03_GE_C01.indd 19 18/11/14 2:30 PM

20 Chapter 1 An Introduction to Engineering Problem Solving

We now discuss each of these steps using data collected from a physics laboratory
experiment as an example.

ExAMPLE 1.1
TEMPErATurE AnALySIS And PLoT
Assume that we have collected a set of temperatures from a sensor on a piece of
equipment that is being used in an experiment. The temperature measurements
shown in Table 1.1 are taken every 30 seconds, for 5 minutes, during the experi-
ment. We want to compute the average temperature, and we also want to plot the
temperature values.

table 1.1 experimental temperature Data

time, minutes temperature, F

0.0 105
0.5 126
1.0 119
1.5 129
2.0 132
2.5 128
3.0 131
3.5 135
4.0 136
4.5 132
5.0 137

SoLuTIon
1. problem Statement
The first step is to state the problem clearly. It is extremely important to give a clear,
concise statement of the problem, in order to avoid any misunderstandings. For
this example, the statement of the problem is as follows:

Compute the average of a set of temperatures. Then plot the time and tempera-
ture values.

2. Input/Output Description
The second step is to describe carefully the information that is given to solve the
problem and then to identify the values to be computed. These items represent the
input and the output for the problem and collectively can be called input/output,
or I/O. For many problems, it is useful to create a diagram that shows the input and
output. At this point, the program is called an abstraction because we are not defin-
ing the steps to determine the output; instead, we are only showing the information
that is used to compute the output. The I/O diagram for this example is as
follows:

M01_ETTE9390_03_GE_C01.indd 20 18/11/14 2:30 PM

1.3 An Engineering Problem-Solving Methodology 21

Time values

Temperature values

Average temperature

Plot of time and
temperature values

Example
1.1

3. hand example
The third step is to work the problem by hand or with a calculator, using a simple set
of data. This step is very important and should not be skipped, even for simple
 problems. This is the step in which you work out the details of the solution to the
problem. If you cannot take a simple set of numbers and compute the output (either
by hand or with a calculator), you are not ready to move on to the next step. You
should reread the problem and perhaps consult reference material. For this prob-
lem, the only calculation is computing the average, or mean value, of a set of tem-
perature values. Assume that we use the first three sets of data for the hand example.
By hand, we compute the average to be (105 + 126 + 119)/3, or 116.6667.

4. MatLaB Solution
Once you can work the problem for a simple set of data, you are ready to develop an
algorithm, which is a step-by-step outline of the solution to the problem. For simple
problems such as this one, the algorithm can be written immediately using MATLAB
commands. For more complicated problems, it may be necessary to write an outline
of the steps and then decompose the steps into smaller steps that can be translated
into MATLAB commands. One of the strengths of MATLAB is that its commands
match very closely to the steps that we use to solve engineering problems. Thus,
the process of determining the steps to solve the problem also determines the
MATLAB commands. At this point, we know that you do not yet understand
the MATLAB commands. However, we present the solution so you can observe that
the MATLAB steps match closely to the solution steps from the hand example:

%---
% Example 1_1 This program computes the average
% temperature and plots the temperature data.
%
time = [0.0,0.5,1.0];
temps = [105,126,119];
average = mean(temps)
plot(time,temps),title('Temperature Measurements'),
 xlabel('Time, minutes'),
 ylabel('Temperature, degrees F'),grid
%---

The words that follow percent signs are comments to help us in reading the
MATLAB statements. If a MATLAB statement assigns or computes a value, it will also
print the value on the screen if the statement does not end in a semicolon. Thus, the
values of time and temps will not be printed, because the statements that assign

(continued)

M01_ETTE9390_03_GE_C01.indd 21 18/11/14 2:30 PM

22 Chapter 1 An Introduction to Engineering Problem Solving

them values end with semicolons. The value of the average will be computed and
printed on the screen, because the statement that computes it does not end with a
semicolon. Finally, a plot of the time and temperature data will be generated.

5 testing
The final step in our problem-solving process is testing the solution. We should first
test the solution with the data from the hand example, because we have already
computed the solution to it. When the previous statements are executed, the com-
puter displays the following output:

average =
 116.6667

A plot of the data points is also shown on the screen. Because the value of the aver-
age computed by the program matches the value from the hand example, we now
replace the data from the hand example with the data from the physics experiment
using these replacement statements:

time = [0.0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0];
temps = [105,126,119,129,132,128,131,135,136,132,137];

When the commands in the program are executed with the complete set of data,
the computer displays the following output:

average =
 128.1818

The plot in Figure 1.4 is also shown on the screen.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
105

110

115

120

125

130

135

140

Time, minutes

T
em

pe
ra

tu
re

, d
eg

re
es

 F

Temperature MeasurementsFigure 1.4
Temperatures collected
in the physics
experiment.

M01_ETTE9390_03_GE_C01.indd 22 18/11/14 2:30 PM

Problems 23

SuMMary

Engineers solve real-world problems, and most of these solutions require the use of
computing to help develop good solutions. We presented a summary of the compo-
nents of a computer system from the computer hardware to computer software,
and reviewed the different types of computer languages and software tools that
help us develop problem solutions. We then introduced a five-step problem-solving
process that we have used throughout this text. These five steps are:

1. State the problem clearly.
2. Describe the input and output information.
3. Work the problem by hand (or with a calculator) for a simple set of data.
4. Develop a MATLAB solution.
5. Test the solution with a variety of data.

algorithm
assembly language
bugs
central processing unit
compiler
compiler errors
debugging
electronic copy

hard copy
hardware
high-level languages
kernel
logic errors
machine languages
microprocessor
operating system

soft copy
software
software life cycle
software prototypes
syntax
utilities

Key terMS

prOBLeMS

The solutions to these problems are at the end of this chapter.

TruE-FALSE ProBLEMS

Indicate whether the following statements are true (T) or false (F):

 1. A CPU consists of an ALU, memory, and a processor. T F

 2. Linking/loading is the step that prepares the object program for
execution.

T F

 3. Sharing of hardware and software among multiple computers is
possible by interconnecting them in the form of a network.

T F

 4. A computer program is the implementation of an algorithm. T F

 5. A utility program converts a high-level language to binary. T F

 6. MATLAB is both a software tool and a programming language. T F

 7. Data can be communicated between internal memory and
 external memory through an ALU.

T F

 8. Spreadsheets are useful to manipulate objects graphically. T F

M01_ETTE9390_03_GE_C01.indd 23 18/11/14 2:30 PM

24 Chapter 1 An Introduction to Engineering Problem Solving

 9. A microprocessor is a small chip onto which millions of transistors
are fabricated.

T F

10. A word processor allows you to enter and edit text. T F

11. MATLAB is very powerful both in computation and in visualization. T F

12. To correct logic errors we repeat only the execution step. T F

13. The compilation step identifies all the bugs in the program. T F

14. A software prototype has all the functions specified in the
requirement specification document.

T F

15. A computer program is a set of instructions to solve a problem. T F

16. A program is completely tested if it works for one set of data. T F

17. A thumb drive is an example of a soft copy. T F

18. A C compiler written for Microsoft Windows can also run on
Linux.

T F

19. Software maintenance is an insignificant part of the cost of
today’s software systems.

T F

20. Assembly Language is not hardware specific. T F

MuLTIPLE-ChoICE ProBLEMS

Circle the letter for the best answer to complete each statement:
 21. Instructions and data are stored in

(a) the arithmetic logic unit (ALU).
(b) the control unit (processor).
(c) the central processing unit (CPU).
(d) the memory.
(e) the keyboard.

 22. An operating system is

(a) the software that is designed by users.
(b) a convenient and efficient interface between the user and the hardware.
(c) the set of utilities that allows us to perform common operations.
(d) a set of software tools.

 23. Source code is

(a) the result of compiler operations.
(b) the process of getting information from the processor.
(c) the set of instructions in a computer language that solves a specific

problem.
(d) the data stored in the computer memory.
(e) the values entered through the keyboard.

 24. Object code is

(a) the result of compiler operations on the source code.
(b) the process of obtaining information from the processor.
(c) a computer program.
(d) a process involving the listing of commands required to solve a specific

problem.
(e) the result of the linking/loading process.

 25. An algorithm refers to

(a) a step-by-step solution to solve a specific problem.
(b) a collection of instructions that the computer can understand.

M01_ETTE9390_03_GE_C01.indd 24 18/11/14 2:30 PM

Problems 25

(c) a code that allows us to type in text materials.
(d) stepwise refinement.
(e) a set of math equations to derive the solution to a problem.

 26. MATLAB is characterized by:

(a) its powerful commands.
(b) its user-friendly interface.
(c) its ability to interface with other languages.
(d) all the above.

 27. A printed copy of a document is called a:

(a) Soft copy.
(b) Manual copy.
(c) Hard copy.
(d) Electronic copy.

 28. An example of software is

(a) a printer.
(b) a screen.
(c) a computer code.
(d) the memory.
(e) all of the above.

 29. High-level languages are

(a) good for real-time programming.
(b) the second generation of computer languages.
(c) written in binary.
(d) written in English-like words.

 30. The difference between the source program and the object program is

(a) the source program possibly contains some bugs, and the object pro-
gram does not contain any bugs.

(b) the source program is the original code, and the object program is a
modified code.

(c) the source program is specified in a high-level language, and the object
program is specified in machine language.

(d) the object program is also a source program.
(e) the source program can be executed, and the object program cannot

be executed.

 31. The place to start when solving a problem is

(a) to develop an algorithm.
(b) to write the program.
(c) to compile the source program.
(d) to link to the object program.

 32. __________ occur at execution time while __________ occur during transla-
tion of user program.

(a) Compile-time errors, logic errors
(b) run-time errors, logic errors
(c) logic errors, compile-time errors
(d) execution-time errors, logic errors

M01_ETTE9390_03_GE_C01.indd 25 18/11/14 2:30 PM

26 Chapter 1 An Introduction to Engineering Problem Solving

 33. Which of the following is a Third Generation computer language:

(a) Mathematica
(b) C++
(c) MATLAB
(d) All

MATChIng ProBLEMS

Select the correct term for each of the following definitions from this list:

algorithm natural languages
arithmetic logic unit (ALU) network
central processing unit (CPU) operating systems
compilation output devices
debugging program
grammar software life cycle
hardware Software maintenance
input devices spreadsheet
Kernel syntax
logic errors system software
machine language utility
memory word processor
microprocessor

 34. The part of Operating System that act as an interface manager between
computer’s hardware and application programs.

 35. The machinery that is part of the computer
 36. The brain of the computer
 37. Devices used to show the results of programs
 38. Compilers and other programs that help run the computer
 39. The steps to solve a problem
 40. The process that converts a C program into machine language
 41. A software tool designed to work with data stored in a grid or a table
 42. The rules that define the punctuation and words that can be used in a

program
 43. The interface between the user and the hardware
 44. The part of a computer that performs the mathematical computations
 45. The process of removing errors from a program
 46. Errors discovered during the execution of a program
 47. The programs help you print files and copy files
 48. A central processing unit contained in a single integrated-circuit chip
 49. An important phase of the software development life cycle that involves

 fixing of errors identified by the users.
 50. The representation of a program in binary

M01_ETTE9390_03_GE_C01.indd 26 18/11/14 2:30 PM

Problems 27

SoLuTIonS:

 1. F
 2. T
 3. T
 4. T
 5. F
 6. T
 7. F
 8. F
 9. T
10. T
11. T
12. F
13. F

14. T
15. T
16. F
17. F
18. F
19. F
20. T
21. (d)
22. (b)
23. (c)
24. (a)
25. (a)
26. (d)

27. (c)
28. (c)
29. (d)
30. (c)
31. (a)
32. (c)
33. (b)
34. Kernel
35. hardware
36. CPU
37. output devices
38. system software
39. algorithm

40. compilation
41. spreadsheet
42. syntax or

grammar
43. operating system
44. ALU
45. debugging
46. logic errors
47. utilities
48. micro processor
49. software

maintenance
50. machine language

M01_ETTE9390_03_GE_C01.indd 27 18/11/14 2:30 PM

M01_ETTE9390_03_GE_C01.indd 28 18/11/14 2:30 PM

EnginEEring AchiEvEmEnt: Wind tunnEls
Wind tunnels are test chambers built to generate precise wind speeds. Accurate scale
models of new aircraft and missiles can be mounted on force-measuring supports in
the test chamber, and then measurements of the forces acting on the models can be
made at many different wind speeds and angles of the models relative to the wind
direction. Some wind tunnels can operate at hypersonic velocities, generating wind
speeds of thousands of miles per hour. The sizes of wind tunnel test sections vary from
a few inches across to sizes large enough to accommodate a fighter jet. At the comple-
tion of a wind tunnel test series, many sets of data have been collected that can be
used to determine the lift, drag, and other aerodynamic performance characteristics
of a new aircraft at its various operating speeds and positions. Wind tunnels are also
used to test the performance of sports equipment like composite skis, snowboards,
bicycles, and racing cars. In this chapter, we give examples of using MATLAB to ana-
lyze wind tunnel results.

2.1 introduction to mAtlAb And mAtlAb WindoWs
MATLAB is one of a number of commercially available, sophisticated mathematical
computation tools, such as Mathematica and MathCad. Despite what their proponents
may claim, none of these tools is “the best.” They all have strengths and weaknesses.

After reading this chapter, you
should be able to
•	understand	the	MATLAB	

screen layout, windows,
and interactive
environments,

•	initialize	and	use	scalars,	
vectors, and matrices in
computations,

•	write	simple	programs	
using MATLAB, and

•	create	and	use	script	M-files.

objectives

Getting Started
with MATLAB

c h a p t e r

2

M02_ETTE9390_03_GE_C02.INDD 29 21/11/14 3:57 PM

30 Chapter 2 Getting Started with MATLAB

Each will allow you to perform basic mathematical computations, but they differ in
the ways that they handle symbolic calculations and more complicated mathemati-
cal processes. MATLAB excels at computations involving matrices. In fact, its name,
mAtlAb, is short for matrix laboratory. At a very basic level, you can think of these
programs as sophisticated, computer-based calculators. They can perform the same
functions as your scientific calculator, but they can also do much more. In many
engineering programs, students are learning to use mathematical computational
tools like MATLAB, in addition to also learning a high-level language such as JAVA,
C, or C+ + . This then gives you the option of choosing the right tool or language
for the problem that you are solving.

Today’s MATLAB has capabilities far beyond the original MATLAB and is an
interactive system and programming language for general scientific and technical
computation. Because MATLAB commands are similar to the way that we express
engineering steps in mathematics, writing computer solutions in MATLAB can
be much quicker than writing solutions in a high-level language. It is important
to understand when to use a computational program such as MATLAB and when
to use a general purpose, high-level programming language. MATLAB excels at
numerical calculations, especially matrix calculations, and graphics. Usually, high-
level programs do not offer easy access to graphing. The primary area of overlap
between MATLAB and high-level programs is in “number crunching”—programs
that require repetitive calculations or processing of large quantities of data. Both
MATLAB and high-level languages are good at processing numbers. It is usually
easier to write a “number crunching” program in MATLAB, but it usually exe-
cutes faster in C or C+ + . The one exception to this rule is with matrices. Because
MATLAB is optimized for matrices, if a problem can be formulated with a matrix
solution, MATLAB executes substantially faster than a similar program in a high-
level language.

hint
A number of examples are presented in this text. We encourage you to type
the example problems into MATLAB as you read the book, and observe the
results. You may think that some of the examples are too simple to type in
yourself—that just reading the material is sufficient. However, you will
remember the material much better if you both read it and type it.

To begin MATLAB, use your mouse to click on the MATLAB icon on the desk-
top or choose it from the list of Applications on your computer. To exit MATLAB,
use the close icon (x) from the upper right-hand corner of the screen for a PC or
use the red circle at the upper left-hand corner of the screen for an Apple com-
puter. These are essentially the only differences that you will see between PC’s and
Apple computers. The MATLAB screens and output will be the same. You should
see the MATLAB prompt >> (or Edu W if you are using the Student Edition) in
the middle of the screen which tells you that MATLAB is waiting for you to enter a
command. To exit MATLAB, type quit or exit at the MATLAB prompt, or select
the close icon (x) from the top of the screen.

MATLAB uses display windows. The default view shown in Figure 2.1 includes
a large command window in the center, the current folder window on the left, and

M02_ETTE9390_03_GE_C02.INDD 30 21/11/14 3:57 PM

